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On a Class of Exactly Soluble Statistical Mechanical 
Models with Nonpolynomial Interactions 
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The approximating Hamiltonian method of N. N. Bogolubov, Jr. is general- 
ized to models with nonpolynomial intensive-observable interactions. The 
original Hamiltonian is proved to be thermodynamically equivalent to 
one linear in the intensive-observable trial Hamiltonian. We show that 
the exact expression for the free energy density in the thermodynamic 
limit can be obtained from a rain-max principle for the system with trial 
Hamiltonian. 
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interactions; intensive observables; thermodynamic equivalence. 

1. INTRODUCTION 

In our previous paper (1) we proposed a further extension of  the approxi- 
mating Hamiltonian method of  Bogolubov, Jr. (2'8) which permits the asymp- 
totically exact (i.e., exact in the thermodynamic limit) investigation of  a 
general class of  model systems with a nonpolynomial interaction term. The 
interaction is a function of  the space average of some quasilocal operator 
(observable; see Haag (4~ and the Appendix). Thus it is a function of an 
intensive observable of  the system. In the case under consideration, the 
N-body Hamiltonian, defined in a region A c Ev (v = dim R v) with a 
finite volume IA[, acts on the Hilbert space of  states ~3A and has the form 4 

HA --- i ra  - -  h I A I A  A - I h l ~ ( & )  (1 .1 )  
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Here h c ~1, T^, and AA are self-adjoint operators satisfying the following 
conditions: 

(i) AA is an intensive observable generated by the space averaging of 
some self-adjoint, quasilocal operator uniformly bounded in OA, i.e., there 
exists M > 0 such that for all A c I~ v, with [A[ < oo 

[[A^II A M 

(ii) The operator T^, which generally defines an extensive observable 
of the system, is such that there exists K' > 0 satisfying 

[I[TA, AA]-II~A < g '  

for all A c R v with [AI < ~ .  
(iii) The operator-valued function rp(AA) can be defined by the spectral 

representation 

~ M + 0  

~o(AA) = dEa(AA) ~(~) 
,1-- M 

where ~(~) is a twice differentiable function on II = [ - M ,  M] [9(~) ~ C2(II)] 
such that there exists K > 0 and the following inequality holds: 

I~"(A)I < g 

Without loss of  generality we further assume ~o(0) = ~o'(0) = 0 [see (1.1)]. 
(iv) The operator TA generates the Gibbs semigroup {exp(-/3T^)}a> o, 

i.e., exp(-/3T^) c Trace-class for all/3 > 0. 
(v) By virtue of  conditions (i) and (iv), the operator 

FA(X) = T^ -- x]AIA^, x c R ~ (1.2) 

also generates the Gibbs semigroup; we require the existence of the thermo- 
dynamic limit t - l im( . )=  limlal/N=~,N~=,l^l~.(.) (where IAI ~ in the 
sense of Fisher (6~) for the free energy density 

FA(X) = -- (/3I AI) -~ In Tr  exp[-/3FA(x)] (1.3) 

namely, for all x c I~ 1,/3 > 0, v > 0 there exists a function such that 

t-lim FA(x) = F(x), FA(x) ~ C~(R ~) (1.4) 

(vi) Define the approximating Hamiltonian 

Ho,a(a) = rA(h + 9'(a)) + [AI(ag'(a) - ~(a)) (1.5) 

which depends on the real parameter a ~ II; for the system with Hamiltonian 
(1.5) and all/3 > 0 and v > 0 the following clustering property must hold: 

- -  ( A A ) n o . ~ . ( a A , }  = 0 (1.6) t.lim{ ( A A2) Ho.̂ (aA~ 2 
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where 6A is determined from the equation 

minfA[Ho,A(a)] = fA[H0,A(~A)], Sa = {a ~ RI: a = (AA}~o,A(a)} 
a~SA (1.7) 

Here use has been made of the notation 

(")z~ = Tr{(. ) exp(-/3H)}/Tr exp(- /3g)  

fA[" ] = -- (/31A])-I In Tr exp{-/3(-)} 

for the thermal average and the free energy density, respectively. 

R e ma rk  1.1. The clustering condition (1.6) corresponds to certain 
restrictions on the magnitude of the fluctuations of the intensive observable 
Aa in the system described by the approximating Hamiltonian (for further 
details see the Appendix). 

Proposition 1.1.m Let the Hamiltonian of the system be given by 
Eq. (I.1) and let conditions (i)-(vi) be satisfied; then 

t-lim fA[HA] -- min.fA[Ho,A(a)] ] = 0 (1.8) 
a ~ S A  I 

where Ho.A(a) has been defined by Eq. (1.5). 

R e m a r k  1.2. As we have shown in Ref. 1, 

minfA[Ho,A(a)] = min maxfA[~o A(a, b)] (1.9) 
a~:S A a~Nl 1 b e l l  " 

where 

Here 

~o,~(a, b) = ro.~(h + el'(a) + r163 

+ [Al{aOl'(a) - qh(a) + b q ~ 2 ' ( b )  - gP2(b)} (1.10) 

~b~(a) = q(a) + �89 2, ~2(b) = - � 8 9  2 (L > 3K) (1.11) 

function ~(a)e  C2(R 1) is a twice differentiable extension of and the 
~o(a) E C2(II) to I~ 1, which satisfies condition (iii). 

In the general case [this means that approximating Hamiltonian (1.5) 
is not to be one-particle operator] the direct calculation of the thermo- 
dynamic limit t-lim{mina~sAfA[Ho,A(a)]} is hardly practicable because of the 
absence of an explicit expression for fA[Ho,A(a)] at large but finite values 
N and IAI as well as because of the lack of explicit information about the 
structure of the set SA for I A] -+ oo. In the present paper it will be shown 
how to avoid these difficulties provided the limit function [see (v)] 

t-lim fA[~o,A(a, b)] = F(h + ~l ' (a)  - Lb) - �89 2 + a~l ' (a )  - * t (a)  

(1.12) 
is known. 
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Remark  1.3. Simultaneously with our work, (1~ the same problem has 
been studied by den Ouden et aI. (7~ They have considered the same Hamil- 
tonian as (l.1) but containing an analytic function of a finite number of 
intensive (normalized (v) self-adjoint operators AS{ ~, i =  1,2 ..... n, under 
restrictions stronger than (i)-(vi) on the operators Ta and A}~ ~ and the func- 
tion ~(.) (see below, Remark 1.4). In a recent preprint (8~ the same authors 
have given a convex-envelope formulation of the problem in the fixed- 
magnetization ensemble. 5 

This paper presents a further development of the approach proposed 
in Ref. 1 for systems with nonpolynomial interactions. In particular we shall 
give here a complete proof (see Sections 2 and 3) of the fact 

t-lim~min fA[Ho,A(a)]'~ = min{t-lim fA[Ho,A(a)]} (1.13) 
kaeSA ) a~8 

which is important for practical applications of Proposition 1.1. In Eq. (1.13) 
the set S is defined by inequalities (1.14) (see below), which, as was first 
shown in Ref. 7, replace the usual self-consistency equations (molecular-field 
equations). Below, a new derivation of Eq. (1.14) is given which is based 
entirely on the analysis of the auxiliary two-parameter variational problem 
for the limit function (1.12). The important particular cases of attractive 
W'(a) > 0] and repulsive [~"(a) < 0] interactions are also paid special atten- 
tion (see Section 3). The main result of the present paper can be formulated 
as follows: 

T h e o r e m  1.1. Let the Hamiltonian of the system be given by Eq. (1.1) 
and let the operators ira and AA and the function ~o(.) satisfy conditions 
(i)-(vi); then: 

(a) t-limfA[HA] exists for all h e R 1,/3 > 0, and v > 0. 
(b) t-lim fA[HA] = mina~s{t-lim fA[Ho,A(a)]}, where 

S = {a ~ ~1: _ F , ( h  + ~o'(a) - O) <~ a <~ - f ' ( h  + ~o'(a) + 0)} 

(1.1.4) 

R e m a r k  1.4. The above theorem is a generalization of the result 
obtained in Refs. 7 and 8 under the condition that function is analytic on II 
and the operators Ta and AA satisfy certain "short-range" conditions. We 
extend this result to the case of the broader class of functions q~(a) ~ C2(11) 
[(iii)] and reduce the restrictions on the range of interactions included in TA 

5 The  convex-enve lope  cons t ruc t ion  has  been p roposed  by Lebowi tz  and  Penrose  (9~ 
for a ma thema t i ca l l y  r igorous  der iva t ion  of  the  van  der  Waa l s  equa t ion  for classical 
gases with a long- range ,  Kac - t ype  potent ia l  (see also Ref.  10). Genera l i za t ion  to 
q u a n t u m  sys tems  has  been ob ta ined  by Lieb (~) (for fu r ther  general iza t ions  see Ref. 12 
and  also the  review article, Ref.  13). 
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and AA to the more general conditions (iv)-(vi). In particular, we do not 
need the boundedness of the intensive (normalized (7)) operator IA]-ITA. 
Thus TA may correspond, for example, to the kinetic energy operator of  
particles enclosed in a region A c R v. 

The proof of Theorem 1.1 follows a line of  reasoning different from 
Ref. 7 and is based essentially on Proposition 1.1 and the main Lemma 2.1 
(see Section 2). The idea of our proof consists in the consecutive establishing 
of the following four relations: 

(1) t-lim I fA[HA] - minfA[Ho,a(a)]],~sA = 0 

(2) minfA[Ho,A(a)] = rain maxfa[~o A(a, b)] 
a e S A  a E ~ l  be~i ' 

(3) t-lim~fmin maxfA[~o A(a, b)] = min max{t-limfA[~o,A(a, b)]} 
~ae~l be~i ' ae~i be~l 

(4) min max{t-limfA[~o.A(a, b)]} = min{t-limfA[Ho.A(a)]} 
aEN 1 b e n  i a e S  

Equations (1) (Proposition 1.1) and (2) have been obtained in Ref. 1 and 
the proofs of Eqs. (3) and (4) are given respectively in Sections 2 and Sec- 
tion 3 of the present paper. The combination of equalities (2)-(4) gives (1.13) 
and of (1)-(4) gives the statement (b) of  Theorem 1.1. 

2. T H E  M A I N  L E M M A  

We start with the proof of Eq. (3) (see Section 1), which is the content 
of  the following main lemma: 

L e m m a  2.1. Let {fA[~o,a(a, b)]} be a sequence of functions generated 
by the two-parameter family of  Hamiltonians (1.10) with operators TA and 
AA satisfying conditions (i)-(vi) (Section 1). Then: 

(a) m i n ~ l  maxb~l{t-limfA[~o,A(a, b)]} = f( f l ,  v, h) exists for all h ~ R 1, 
fl > 0, andv  > 0. 

(b) f(/3, v, h) = t-lim{mina~imaxo~eifA[~o.A(a, b)]. 

Proof. (a) Let us denote z = h + @l'(a) - Lb. Then [see (1.3) and 
(1.10)1 one has 

fA[~o,A(a, b)] = rA(z) + arbl'(a) -- ebb(a) -- �89 z (2.1) 

Conditions (i) and (v) (Section 1) imply the uniform equicontinuity of the 
family {Fa(x)}, since 

IFA(x') -- Fa(x")l <~ M i x '  - x"] (2.2) 
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for arbitrary x', x" E I~:. Hence, in the thermodynamic limit we obtain that 
the limit function F(x) [see (1.4)] obeys the Lipschitz condition 

IF(x9 - F(x")[ <~ Mix '  - x"l (2.3) 

Using (2.3), one easily verifies that for all fixed a ~ R: the function 
t-limfA[~o,^(a, b)] reaches the absolute maximum with respect to b E ~: 
on the bounded interval [b] ~< 2M. Denote by b(a) the point at which the 
maximum of t-limfA[Ygo,A(a, b)] is attained, and by bA(a) the corresponding 
point for the function fA[~o.A(a, b)]. On the other hand, the uniform equi- 
continuity of the family {FA(x)} and the pointwise convergence (1.4) imply 
the uniform convergence of  {FA(x)} to F(x) on every bounded set from R: 
(see, e.g., Ref. 14). Hence, for all a, b G R: and arbitrary fixed D > 0 such 
that [h + ~: '(a) - Lb[ <. D we find 

[t-limfA[Ygo,A(a, b)] -J~[~/fo,^(a, b)]] ~ 3A(D) 

where t-lim 8A(D ) = 0. Thus, for every fixed a ~ ~: one has 

fA[3(fo,^(a, bA(a))] i> fA[~o.A(a,/~(a))] 
>>. t-limfA[Ygo,A(a, b ( a ) ) ] -  8A(Da) (2.4) 

where Da = Ihl + ]~:'(a)l + 2LM. Similarly 

t-limfA[~o.^(a, b(a))l /> {t-limfA[Ygo.A(a, b)]}[b=~A(~ 

>>- fA[~o.A(a, bA(a))l - 8A(D~) 

and, taking into account (2.4), we obtain 

[ max{t-limf^[Yfo A(a, b)]} - fA[~o,a(a, ~A(a))] ] ~< 3A(D~) (2.5) 
I OG~I I 

Thus 

t-lira fA[~o,A(a, b(a))] 

= max(t-limfA[~o A(a, b)]} 
be~: 

= t-limfmaxf̂ [3(Y~ ,A(a, b)]) - t-lim fA[Yfo,A(a, bA(a))] (2.6) 

Consider now the sequence {fApffo,A(a, bA(a))]}, a E ~1. In Ref. 1 we have 
shown that the functions {bA(a)} are continuously differentiable with respect 
to a E I~: and 

t~A(a ) --- (AA)affo.A(a.~A(a)) (2.7) 

By differentiating the above identity with respect to the variable a ~ It~: and 
making use of (1.11) and condition (iii) (Section 1), we conclude that 

db,x(a) ~:"(a) K 0 ~ < - - - ~ < - Z - - ~ < I + z  (2.8) 
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Hence, from inequality (2.2), condition (iii), and the existence of the limit 
(1.4), it follows that the limit function t-limfA[Yfo,A(a,/~A(a))] is continuous 
in a ~ ~:. Further, from the estimate 

fA[~o,A(a,  bA(a))] -- fA[~0.A(0, /~A(0))] 

>>- - - M ( 4 K  + 3L)la I - �89 - 3K)a  2 (2.9) 

in which we have taken into account the fact that fA(a)[ ~< M [see (2.7) 
and condition (i)] as well as (2.8) and the inequality 

aCb:'(a) - (I):(a) >>. � 8 9  3K)a  2 (2.10) 

it follows that the function t - l imfA[~o.A(a,  b,~(a))] attains its absolute mini- 
mum in the bounded interval lal ~< R = 2M(4K + 3L)/ (L  - 3K). Let 4, 
[al ~< R, denote the point that provides the absolute minimum value of the 
function t - l imfA[~o,A(a,  bA(a))] on ~:. Then from (2.6) we obtain the 
existence of  

min max{t-limfA[Wo,A(a, b)]} = t-limfA[Jfo,A(4, bA(4))] (2.11) 

(b) Let us return now to the estimate (2.5). For all a ~ [ - R ,  R] we have 

[t- l imf~[~o,A(a,  b(a))] - fA[~o,~(a ,  b(a))]] ~< 3A(/5) (2.12) 

where/3 = maxl~ I ~n D~ is finite. The estimate (2.9) also implies the existence 
o f  the point a = 6 ~  ( ]4~  I ~< R )  that provides the absolute minimum value 
of  the function fa[~o,~(a,/~(a))] on E:. Therefore from (2.12) and the 
definition of the points a = 4,  a = 4A we obtain 

t-limf~[Jfo,~(4,/~(4))] -f~[~o,~(4A,/~(4~))] 

{ t - l imfa[~o,~(a ,  b(a))]}l~=~ ~ - f~[Wo,A(t:~,/~A(6~))] 

~< ~( /3)  (2.13) 

Similarly, 

fA[~0,A(6A, /~A(aA))] - t-limfA[~o,A(6,/~(6))] 

fA[~0,A(6, 6A(6))] -- t-limfA[~o.A(d,/~(a))] 

From (2.13) and (2.14) we find 

]fA[~0,A(4Z~, /~A(4A))] -- t-limfA[~f~o,A(4, b(4))]l ~ ~A(/3) 

Hence, in the thermodynamic limit we get 

mina~nl max{t-lira f A [ ~ o b ~ :  ,A(a, b)]} = t-limfmin~a~l max fAY~ob~n: ,A(a, b)]) 

which completes the proof of  the lemma. 

(2.14) 

(2.:5) 

(2.16) 
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Corollary 2.1. If  the function F(x)  is known, Lemma 2.1 gives the 
thermodynamic limit of the free energy density of the model (1.1) in terms 
of the two-parameter variational problem [see (1.8), (1.9) and (2.16)] 

t-limA[HA] = rain max{t-limfA[~o,^(a, b)]} (2.17) 
aE~ i bER i 

This result generalizes the minimax principle due to Bogolubov (~',3~ for models 
with the nonpolynomial interaction (1.1). 

3. P R O O F  OF T H E O R E M  1.1 

(a) Proposition 1.1 [see (1.8)], Remark 1.2, and Lemma 2.1 imply the 
existence of t-limfA[HA]. The fact that min~n: maxb~R:fA[~0,A(a, b)] is 
independent of the choice of the auxiliary parameter L > 3K in Eq. (1.11) 
follows from (1.9). 

(b) Note that the functions {FA(x)} and consequently the function 
F(x)  [see (1.2)-(1.4)] are convex on R:. Therefore the left derivative F'(x  - O) 
and the right derivative F' (x  + 0) exist for all x ~ R:. Hence, the condition 
for maximum with respect to b ~ R: in (2.17) is equivalent [taking into 
account Eq. (2.1)] to the inequalities 

- F ' ( h  + @:'(a) - Lb - O) <~ b <. - V ' ( h  + (I):'(a) - Lb + O) 
(3.1) 

From the monotone nonincreasing nature of the left- and right-hand sides 
of (3.1) with the increase of b ~ R: it follows that for each a ~ R: the solution 
b = b(a) of inequalities (3.1) is unique. For b = b(a) we have 

- F ' ( e ( a )  - O) <<. b(a) <<. -F ' (~ (a )  + 0) (3.2) 

where 

e(a) - h + @:'(a) - Lb(a) (3.3) 

It should be emphasized that the uniqueness of ~(a) [or ba(a), which is the 
solution of inequalities (3.1) with Fa(h + qb:'(a) - Lb + 0)] is an immediate 
consequence of the strict convexity of the function t - l imfa[~o.^(a,  b)] (or 
fA[~0.A(a, b)]) with respect to b E R:. Furthermore, from the uniform in 
b e • (for any compact set ~ = R:) convergence of the sequence 
{fa[f0,a(a, b)]} [see Proof (a) of Lemma 2.1] and from the uniqueness of 
the points ~a(a) and b(a) it follows that for every a E R: one has 

t-lira ba(a) = b(a) (3.4) 

We need now some properties of the function b(a). Integrating inequalities 
(2.8) over the interval [a:, a2] and proceeding to the thermodynamic limit, 
we find that 

0 <~ ~(a2) - b(al) <~ (1/L)[@:'(a2) - @:'(a:)] (3.5) 
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i.e., b(a) is a Lipschitz-continuous [see (l.11) and condition (iii), Section 1], 
monotone-nondecreasing function of a ~ El. 

Consider now the conditions for the determination of the points {a~} 
which correspond to the local minima of the function t- l imfA[~o.A(a ,  b(a))]. 
By definition of the point am t {a~}, there exists a neighborhood E(am) of 
am such that for all a ~ E(am) 

t - l imfA[~o,A(a,  b(a))] - t - l imfA[~o,A(am, b(am))] >~ 0 

Hence, by using (1.12) and the concavity of ~l(a), it is easy to obtain the 
inequality 

F f f ( a ) )  - F(~(am)) - L~(am)[b(a) - /~(am)] + a[~l'(a) - cb((am)] >1 0 

(3.6) 

Next, from the convexity of the function F ( x )  on R ~ it follows that for 
any xl ~< x2 

(x2 - x l ) F ' ( x 2  - O) <~ F(x2)  - F(x~)  <<. (x2 - x l )F ' (x~  + 0) (3.7) 

If  am <<. a, a ~ Y~(am), then from (3.3) and (3.5) we have ~(am) ~< f(a) and 
from (3.6), in view of (3.2) and (3.7), we obtain 

0 ~< [god'(a) - ~l'(am)][a + F'f f (am) + 0)] 

- L[b(a) - b(ara)][b(am) "{- F'(z.(am) + 0)] 

<<. d)l"(~a)(a -- am)(a -- /~(am)) (3.8) 

where f ~ e ( a m ,  a) and ~l" (~a)> 0 [see (1.11)]. Hence, for all a t  
{a E Z(am) : am <<. a} one has 

a /> /~(am) (3.9) 

By similar arguments, for all a ~ {a ~ Y'(am): a <<. am} [now f(a) ~< f(am)], we 
find 

a ~ b(am) (3.10) 

Combining inequalities (3.9) and (3.10), we conclude that am =/~(am). We 
have thus proven the following important fact: Every point a = a m that 
corresponds to a local minimum of the function t - l imfA[~o.A(a,  b(a))] 
satisfies the equation 

a =/~(a) (3.1 t) 

We observe now that on the set S of all the solutions of Eq. (3.11) 

S = { a t  RI: a = b(a)} (3.12) 
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the Hamiltonians ~0,a(a, b(a)) [(1.10)] and Ho,A(a) [(1.5)] coincide; therefore 

min{t-limfA[~0 A(a, b(a))]} = min{t-limfa[~o,^(a,/~(a))]} 
a ~  1 ' a ~ S  

= min(t-limf^[Ho.A(a)]} (3.13) 
a ~ S  

The definition of the set S [(3.12)] can be reformulated in terms of the 
linearized system FA(x ) [see (1.2)-(1.4)]. To this end we notice that if tl e S, 
then from (3.2) it follows that 

- F ' ( h  + ~o'(gt) - O) <~ gt <~ - F ' ( h  + V'(a) + 0) (3.14) 

and, conversely, if (3.14) holds, then b = ~i satisfies inequalities (3.1) for 
a = d. Hence, by the uniqueness of the point/~(a), we get b(~i) = 4. Therefore 

S = {a ~ ~1: _ F , ( h  + ~o'(a) - O) <~ a <~ - F ' ( h  + ~'(a) + 0)} 

which [see (2.17) and (3.13)] completes the proof of Theorem 1.1. 

Coro l l a ry  3.1. Let the function ~(.) in the initial Hamiltonian (1.1) 
correspond to an attractive type of interaction, i.e., let for all a ~ II 

~o"(a) > 0 (3.15) 

Then 

min{t-lim fA[Ho,a(a)]} = min(t-lim fA[Ho,a(a)]} 
aeS a ~  

= t-limfA[Ho,^(5)] (3.16) 

where a = 5 satisfies the self-consistency equation (1.7), taken in the 
thermodynamic limit: 

a = t-lim(A^)Ho.A(a) (3.17) 

Actually, from the Bogolubov inequality, the spectral representation (iii) 
(Section 1), and condition (3.15) it follows that 

/ r M  +O \ 
A [ H o . a ( a ) ]  - 0 

/Ho,A(a) 

(3.18) 
where ~:A e (-- M, M). Hence, taking into account that S c R 1, we have 

t-limA[HA] ~< min{t-limfA[Ho.a(a)]} 

<~ min{t-lim fa[Ho.^(a)]} (3.19) 
a E S  

Since the function t-limfA[Ho.A(a)] is continuous [see (1.3)-(1.5)] and the 
set Sis bounded [S c II, because IF'(x + 0)l ~< M; see (i) and (v), Section 1] 
and closed [see (3.5) and (3.12)], it reaches the minimum on some subset of 
the set S. From (3.19) and Theorem 1.1 it follows that equality (3.16) must 
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hold for any point 6 belonging to this subset. Next, taking into account 
(3.15) and the existence of  the left and right derivatives of the function 
t-limfA[Ho,A(a)] [see (1.3)-(1.5)], the minimum condition for ~ ~1 takes 
the form 

F'(h + ~o'(6) - O) + ~ <<. 0 
(3.20) 

F'(h + ~o'(6) + O) + ~ >>. 0 

On the other hand, by definition, ~ ~ S. Therefore, (3.14) and (3.20) imply 
the differentiability of the function t-limfA[Ho.A(a)] at the point a = 

= - F ' ( h  + ~0'(~)) (3.21) 

Equality (3.17) is then a consequence of the Griffiths lemma (15> about the 
convergence of the derivatives of the convergent sequence {FA(x)} of convex 
functions at the points of differentiability of {FA(x)} and the limit function 
F(x)  : 

- F ' ( h  + 5o'(6)) = t - l im{-FA' (h  + ~o'(~7))} = t-lim(AA)~o,A(a> (3.22) 

R e m a r k  3.1. As was shown in Ref. 1, in the case of attractive inter- 
action, Theorem 1.1 holds without the clustering condition (1.6). This 
specific property of attraction has been exploited in Ref. 16 for the particular 
case of q~(a) = 1Ja2, J > 0. The result of this paper can be generalized now 
to the case of an arbitrary twice differentiable function ~(a), such that 
~o"(a) > 0, for a ~ 17. 

R e m a r k  3.2. If the interaction in Hamiltonian 1.1 is not purely attrac- 
tive, then the clustering property is essential. In the case of q~(a) = 1Ja2, 
J < 0, this question has been discussed in Ref. 17 (see also Ref. 3). Den 
Ouden et al. (7> have made an attempt to replace the clustering condition by a 
"short-range interaction" condition for the operators ira and AA simul- 
taneously. In Ref. 18 it has been assumed that the bounded, self-adjoint 
operators Ta and AA are one-particle operators, then the clustering property 
follows trivially. 

Corollary 3.2. Let the function ~0(.) in (1.1) correspond to a repulsive 
type of  interaction, i.e., for all a e II one has 

Then 

where 

~0"(a) < 0 (3.23) 

min{t-lim = max{t-lim fA[Ho,A(a)]) 

= t-limfA[Ho.A(gO] (3.24) 

6 = t-lira 6A (3.25) 
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and aA is the unique solution of the self-consistency equation for the finite 
system [compare (1.7) for SA]: 

a = (AA)u0.^(~) (3.26) 

Actually, by virtue of the convexity of function F(x) and condition (3.23), 
the set S contains only one point a = ~. Hence, using Theorem 1.1, we obtain 

min{t-lim fA[Ho,A(a)]} = t-lim fA[Ho,A(gt)] = t-lim fA[HA] (3.27) 
a ~ S  

Next, taking into account the spectral representation (iii) (see Section 1), 
the Bogolubov inequality, and (3.23), we get 

\~-/CM+~ fA[HA] --fA[Ho A(a)] /> --�89 [ M  dEa(AA) ~0"(fA)(h -- a) 2 1> 0 
A 

where fA ~ ( - M ,  M). Therefore 

t-lim fA[Ho,A(6)] <~ max{t-lim fA[Ho.A(a)]} 

<~ t-lim fA[HA] (3.28) 

Thus Eq. (3.24) is a direct consequence of (3.27) and (3.28). Equality (3.25) 
follows from the uniform on any bounded interval of ~z convergence of 
the sequence {fA[Ho,a(a)]} to the limit function t-limfA[Ho,A(a)] [see Proof  
(a) of Lemma 2.1] and from the uniqueness [due to (3.23)] of the points 
aA and ~. 

A P P E N D I X  

1. Let the region A c E v (or Zv) be of finite volume with respect to 
the usual Lebesgu e measure on E~; ~(A) = [A[ < ~ (or with respect to the 
corresponding discrete measure on 77~). Consider the local C*-algebra of the 
observables 9AA, contained in the domain A, that is the algebra of all bounded 
operators acting on the Hilbert space of states gAA. (6) If  x ~ A, then the 
operator-valued function A : x -+ A(x) ~ ~A is called a local observable (local 
operator). Along with this it is convenient to define "quasilocal quantities" 
(Haag(4)). Let the continuous function fo(x, y) be such that there exists 
Q > 0 and fo (x ,y )  = 0 for Ix - y[ > Q; then 

aQ(y) = f^ dx fQ(x, y)A(x) 

is called a quasilocal operator. 
The space average of the local (quasilocal) operator A(x) over the 

region A c ~ (or ~ )  is defined for arbitrary x ~ A as 

AA = (1/ ]AI)[  dy %A(x) (A.1) 
,: GA(X) 

where the translation % acts on the operators A(x) as follows: %A(x) = 
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A(x + y). The operator AA is called an intensive (1) (or normalized (7)) operator. 
Here GA(X) is such that for all % ~ Ga(x) we have x + y ~ A. For  Z ~ the 
corresponding discrete measure dy induces summation over the sublattice 
A c 7/L A similar construction for A1 c A2 c Aa c "" and IAkl -+ co is 
called an "averaging operation, ''(zm M-filter, (2~ or M-net (~ (see also Ref. 
21). 

2. With the notion of the space-average (or M-filter, M-net) of quasilocal 
operators one can formulate such a property of the infinite system states 
p(.) as weak clustering(19=21): 

lira . ! ,  fa dy p(%A(x)B) = p(A(x))p(B) (A.2) 
lal~oo ]A[ A(x) 

for arbitrary A(x), B ~ UA=~" 9"IA" This property is necessary for the G- 
invariant state p(.) to correspond to a pure phase (see Refs. 6 and 19-21). 

In the present work we have used a clustering property [see (vi), Section 
1], which is obviously weaker than (A.2), since (vi) involves only one inten- 
sive operator, the one appearing in interaction Hamiltonian (1.1). This 
means that for such a model the infinite system states generated by the 
approximating Hamiltonian (1.5) may not correspond to pure phases. Thus, 
the condition (vi) is just a restriction on the fluctuations of the intensive 
operator AA. 

A trivial example, when the clustering property (vi) occurs, corresponds 
to the case of one-particle operators Th and AA (see Refs. 2, 3, 18, and 22). 
It can easily be verified that the infinite system states generated by the 
approximating Hamiltonian (1.5) for all a ~ R ~ are G-invariant and weakly 
clustering. 

Now, let A c 7/2, ]A] < co, and let the operator 

J 
= - -  ~ ai'~s, J >  0 

Ta 2 i~-si =1 

describe the square Ising model (or = _+ 1) with nearest neighbor interaction. 
Let the space average Aa be 

1 

where A(0) denotes the quasilocal operator (%/2) ~lo-si =z % and 

A(i) = r,A(O)= �89 ~ <~s 
li - i l  =1 

Then the infinite system states generated by the approximating Hamiltonian 
(1.5) are known to be not weakly clustering for some domain of the variables 
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/3 > 0, h ~ El ,  and  a ~ E 1. Nevertheless,  the clustering p rope r ty  (vi) holds  

because the f luctuat ions in (1.6) are p ropo r t i ona l  to IA[-ICA(3, a, h), where 
CA(fl, a, h) is the specific heat  capaci ty,  which according  to Ref. 23 is bounded  
above  by O(lnlAI)  for  IAI --~ oo. 
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